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I-A

INTRODUCTION - This note considers the feature selection problem resulting

from the transformation x = Bz where B is a k by n matrix of rank k
and k < n. Such a transformation can be considered to reduce the dimension
of each observation vector 2z, and in general, such a transformation results
in a loss of "information". In terms of the divergence, this information
loss is expressed by the fact that the average divergence DB computed using
variable x 1is less than or equal to the average divergence D computed
using variable ‘z. If DB = D, then B is said to be a sufficient statistic
for the average divergence D. If B 1is a sufficient statistic for the
averége divergence, then it can be shown that the probability of misclassification
computed using variable x (of dimension k < n) 1is equal to the probability
of ﬁisclassification computed using variable z.
In actual practice, DB can be somewhat less than D and yet retain
enough information (as measured by the probability of misclassification). Although
the necessary ratio of DB/D is problem dependent, empirical
results seem to indicate that this ratio lie in the range .8 < DB/D <}. The

global or absolute maximum value of D, over the class of all k by n

B
matrices B is a function of k. Let DB* denote this global maximum. The
main purpose of this note is to develop an upper bound ¢k (a function of k)

which necessarily satisfies in general
* <
Dp* < ¢ 5D

It is shown that ¢k can be rather easily obtained for 1 < k € n by solving

for the eigenvalues of m distinct n by n matrices, where m is the



number of distinct classeé. Thus only mn distinct eigenvalues, obtained but
once, are adequate to determine ¢k for any k < n. (If channel selection is
desired and ¢k/D is small, then more than k channels should be selected to
process the data).

Also included in this note is what is believed to be a new proof of the
well known fact that D 2 DB. Using tﬁe techniques necessary to prove - the
above fact, it is shown that the "Brattacharra distance" as measured by

variable & 1is less than or equal to the Brattacharra distance as measured bty

variable z. Finally, upper and lower bounds on the Bratacharyya distance as
measured by x are derived. The expression for the gradient of the Bratacharyya
distance with respect to the matrix B is also derived. Although all the

Bratacharyya results are for the two class problem, they can easily be extended

to the situation of m-distinct classes.

DISCUSSION

We are interested in comparing n-dimensional information measures with
k-dimensional information measures algebraically; that is by using various
matrix operations. All the necessary algebraic relationships will be discussed
and considered below. Also, these algebraic properties will be related to the
interclass divergence (Reference 1) and fhe Bratacharra distance (Reference 2).

The following theorem from Reference 3 is essential to the discussion.
Theorem 1 - Consider the sequence of symmetric matrices
A = (a,.) i,j =1, «ouy ¥

for r=1,2,...,n. Let Ak(Ar) denote the k'th characteristic root of

A_, where
by

MG 2 A0 2 2B



Then e Bgp) < A < A Ay)

The following corollary follows immediately from Theorem 1 and will be used

frequently.

Corollary 1= A, o .y(A) < A (A) < A (A1) < A (&)

Lemma 1 - Let A and Q be real n by n square matrices where QQT =1
and A 1is symmetric. Then if A and x are an eigenvalue and corresponding
eigenvector of A, then A and Qx are an eigenvalue with corresponding

eigenvector of QAQT.

Proof:  (QAQT)Qx = QA(Q Q)x

]

QAx

MQx Q.E.D

we define:

B; areal k by n matrix of rank k < n.
A; areal n by n symmetric positive definite matrix.

S; an n by n symmetric matrix.
Define the function
p = %— tr{ (BABT)‘l(BSBT)}

where tr denotes the trace of a matrix., We use the notation %% to denote

the matrix whose i-j'th element is the where bij is the element in

abij

the i'th row and j'th column of B. The following three Lemmas are proved

in Reference 2 and are included for completeness.



Lemma 2 - 57T = [s8” - as" A"y (mseh) 1¢ansT) ™t
Lemma 3 - BG%%)T =0

~
Lemma 4 - If B = QB where Q is a k by k matrix of rank k, then

T _ T -1
(i‘%q - T q

Remark: Lemma 3 shows that ¥, considered as a function of B, is invariant
under a non-singular transformation, and also that { essentially

depends only on the subspace spanned by the row vectors of B.
The following theorem is proved in Reference 2.

Theorem 2: Given two real symmetric matrices A and S with A positive

definite, there exists a nonsingular n by n matrix R such that

RARC = I
RSR' = D

where I is the identity and D 1is a diagonal matrix.

Remark; The elements of D are the eigenvalues of A'ls.

. k
- Y Sii; )‘i where }\1 2 )\2 cee 2 )\k are the k-largest eigen-

values of A—lS. Thus P 1is maximized by letting the row vectors of B

Theorem 3

correspond to the eigeﬁvectors associated with the k-largest eigenvalues of
-1 ’
A S.

Proof: By Theorem 2, there exists a non-singular n by n matrix R such



that _RAR? =1 and RSR® = D, where the eigenvalues of A'ls are
the diagonal elements of D.
~ A
We assume B 1is the the form B = B R where B is a k by n matrix
: N
of rank k (certainly this is no restriction, as evidenced if B is chosen

to be BR-l). Then

1 tr{(BABT)_l(BSBT)}

<
[}
|

. - A
tr{ BRARTET) "1 (BrSRTBT) }

[
N

er{ B85y~ 1 3o8Ty)

!
T

By Lemma 3, Yy now depends only on the subspace spanned by the row

~ : A AT
vectors of B; thus we can assume B B™ =1 (the k by k didentity) and

k
the problem becomes one of maximizing
A A
¢ = te{(8 D EH}
. . N NT . n . . A AT
subject to the constraint B B™ = Ik' But given B satisfying B B" = Ik’
N
"extend” B to an orthogonal n by n matrix
i{?
£~
=y B
- (3)
where Q QT = I. By Lemma 1, the eigenvalues of QD QT are those of D. But

T

by theorem 1, the &'th largest eigenvalue of B D B® 1is less than or equall

to the £'th largest eigenvalue of Q D QT, 1< 82 <%k, Thus,

k
v 52,

i=1)i» Wwhere Al 2 .02

k



are the k-largest eigenvalues of A_IS, with equality being obtained if

the rows of B are chosen to correspond to the eigenvectors associated with

the k-largest eigenvalues of A ~S, QED
Z .
- <
Corollary 1 '_tj 1)\j (n-k) = Y and thus ¥ 1is bounded below by the_ k smallest

eigenvalues of A—IS.

Proof: Follows immediately from the proof of Theorem 3 and Corollary 1 of

Theorem 1.

Remark: In particular, note from Corollary 1 of Theorem 1, the smallest eigenvalue
of A-IS is less than or equal to the smallest eigenvalue of (BABT)_l(BSBT), the
second smallest eigenvalue of A_ls is less than or equal to the second smallest

eigenvalue of (BABT)_l(BSBT), etc,

We use theorem 3 to obtain a tighter upper bound on the so called average

divergence, defined by (Reference 4)

m-1 m

|w)
]

B = i=1 jot71 Pp1.9)

m
% tr{ igl[(BAiBT)-l(ESiBT)} - E(—g’-‘—ﬂ K

where
Ai 3 an n by n symmetric positive definite covariance matrix

for class 1i.

My o3 n-dimensional mean vector for class i.

Gij My

m ;3 number of distinct classes.



(A + 6 5 )

ﬁtﬁ?ryﬂa

k ;3 the number of rows of B,
Thus let

A1z e B A

be the k largest eigenvalues of A;lsi. Then
Corollary 2: ok

m k
&z i A m(m—l) ﬁz i_ _ m(m-1) Kk

i=1 §=1"1,j4n-k ~ ~ 2 i=1 §=1"4,3 2

It is shown in Reference 1 that DB < D. We now derive this result

algebraically. Clearly, by definition of DB’ it suffices to show
Dy(i,3) < D(, 1)
where the interclass divergence between classes i and j is defined as

Sy 1 -l P AUV R | T
D(i,j) = 5 tr{Ai Aj + Aj Ai} n+ 3 tr{Ai + Aj )GijGij }

and the transformed divergence DB(i,j)' is defined as

Dy (1, 3) -2 trﬂ@AiBT)'l(BAjBT) + (BAjBT)‘l(BAiBT)} -k

N =

+ 1 tr{[(BAiBT)‘l + (BAjBT) I T5Ty}

Theorem 4 - D(i,j) & DB(i,j)

Proof: By theorem 3, it suffices to show

1 -1 -1 1. T.-1 T T.-1 Tyy o o
5 tr{Ai Aj + Aj Ai} 3 tr{(BAiB ) (BAjB ) + (BAjB ) (BAiB )} = n-k



-1
Let A, 2 ... 2 A, > 0 be the eigenvalues of Aj7 A, and let vy 2 ...2Y, >0

J
T,-1 T
be the eigenvalues of (BAiB ) T(BA,BY)

k|
It suffices to show
1 1
E'i=l(ki + l/Ai) - §'j=l(Yj + 1/Yj) > n-k

First note that the function f(x) = x + 1/x 1is greater or equal to 2
for x >0, and that f(l) = 2 so that f(x) 1is strictly decreasing in the

interval (0,1] and strictly increasing in the interval [1,©). Thus assume
Y12 ¥p oeee 2V 2LV 2 e 2y

and the proof follows by noting

A, +1/0, =2y, + 1y, i = 1, voe, &
3 /j YJ /YJ | J s ’
Aot t 3 L Yies + =0, ..., (k-(2+1))
I Mg T Tk
A +_—_1_.__... > 2 j=k+t1l, ..., n
n-i+ 0D T X T e , s sens

Q.E.D.

We now review briefly the concept of the square root of a positive

definite symmetric matrix A. Since A 1is positive definite, it follows that



where QQT = I and the Ai are the strictly positive eigenvalues of ‘A,

i.
Then, as in Reference 2, we define the matrix A% as

A% =g ' o1
. Q
U

/N7 7% /2
It is readily verified that A A" = A, and-also that A" A = AA". Now,

consistent with the previous notation, let Al and A2 be n by n

positive definite symmetric matrices.

Consider the ratio of the determinants

’Z ~ IAl + A2|
¢ B Y

Y
N

It follows from the previous discussion of 'square roots of a matrix" that
/-"}

B o ",{l’ I/j" ‘7;" l/f:
A = |A1A2+A2Al_|

| A+ A7

where A; denotes the inverse of Ai and A is defined as

I
A= £20,

Note that if x is an eigenvéctor of A with eigenvalue A, then x 1is

also an eigenvector of At with eigenvalue 1/A.



10

Thus if Al z 12 oo 2 Kn‘> 0 are the eigenvalues of A, it readily follows

that

A

Oy +1A)DQ, + 1/2) veee O # 1/2)

n
= 5Oy + 1A

Now if B is a k by n matrix of rank k, we define

o Y

i, 5 % Ty
|(BA1BT) }(BAZBT)@ (BAZBT) > (30 37|

k

2 shk
where Yl 2 Y2 ees 2 Yk > 0 are the eigenvalues of (leBT) ‘L(B ZZB )%
We prove

' N / )
Theorem 5 ?C 2 { > 2k .
sheorem ) B -
| 3’[B T
Proof: It is shown in the next theorem that B( 53——) = 0, Thus we can
assume as in Theorem 3
/N
B=BR

where
RAlR? = I and RAZR: = D where D is a diagonal matrix with diagonal
elements corresponding to the eigenvalues of AIl AZ' Then

-
’

wf -4 y ;
A AT HE AN % A Nolipn o Aaarm T
AB = @) @) + @By @EH”
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and since by the initial remark

B depends only on the subspace spanned

N A
by the row vectors of B, it suffices to consider only those B satisfying

%’ﬁT= I. 1In this case

ol
"h r arh [ad AT-I/
B=|(BDB) + @0EH™1

2 2 2 , A AT .
Thus if Y, 2 Yo so- 2 Yy > 0 are the eigenvalues of B D B° and if
}\2 2 2 }\2 > 0 are the eigenvalues of AIlAz, it follows by definition

1— LY n

. A AT Y
that Yy P Yo oo > Y, are the eigenvalues of (B D B") and that

}\n are the eigenvalues of (/\1l Az)&

>
v
.
.
.
v

Thus as in Theorem 4, make the following association, with

Yp 2 Yg eee 2Yp 212y e 2y

Ayt 1A 2y, + 1 = 1,...,0
An-j + l/Ah—j 2 Yk—j + 1/Yk-j 3= 0,000, (k=(241))
A—+(!L+1)+x"—"——‘]L z 2 i =k+l,...,n
o3 e+ (1)
In particular
X (k- (241))
< H >\. + 1 )\ ‘H )\ . + l )\
B j:l( J / j) J=0 ( n'J / n—j)
(k- (2+1))
> 9
<2 A+ 172 I A L+ 1A ) <
54+ 120 I O+ /AP
Q.E.D.
Now define thg function ]A1+A2 I

1, | —2
H(1,2) = 51n
27\ A, B,
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and T
B, + 48" |
Hy(1,2) = SInf 2
|BA,B |¢1BA B |

Then by Theorem 5 it is true that

HB(1,2) < H(1,2)

9H(1,2) th

We use the notation ——x——— to denote the k by n matrix whose i-j

9B

3HB(1,2) :
element is —5;—— Wwhere b,. is the i~j'th element of B. Then
ij J
T

Lemma 53 BHB(l,Z)

_ T T,-1
——é-:-B—_—) = (Al + AZ)B [B(Al + A2)B ]

1 T T,-1 T T,-1
_-E{AIB (BAlB ) T+ AZB (BAZB ) 7]

Bh (1 2)
so that =0

Proof: If dA denotes the matrix each element of which is the differential

of the corresponding element of the matrix A, then from Reference 2,

d1n|A] = ee{a™ a 1)

Now considering only the variation in B,

a1n |BABT| = tr{(eAB") " (aBA BT + BA aBT))

2 tr{dBAlBT(BAlBT)'l}
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so that

T
) T _ T T.-1
=5~ In/BAB ] = 2[A;B"(BA;B7) "]
so that
T
BHB(l 2)
’ _ T T,-1
"7%?“‘{) = (A, + A,)BT[B(A; + A,)B']

1 T T,~1 T T,-1
-3 [AlB (BAlB ) T+ AZB (BAZB ) 71

Lemma 6: Let the row vectors of B correspond to k of the eigenvectors of

8H,(1,2)

-1 A,. Then ———— =0

) 5B

Proof: We choose B such that

BAlBT =1 and BAzBT =D where I is identity and D is a k by k

diagonal matrix of k eigenvalues of A;l A The proof follows immediately

2.
by noting that

ABT

T
,B = AlB D

2

2 ,
041 *c* 2 An be the eigenvalues of

Remark: Let Ai > Ag ces 2 A; 2122
AzlAz, and suppose that

k-j-1

- :
= LI Oy + 120 H T,

- ma

Opog + 1241

maximizes the product of any k factors of the form (Ai + l/Ai); then by
Theorem 5 HB(l,Z) attains a global maximum by choosing the row vectors of

B to correspond to the eigenvectors of A;l A, with eigenvalues

2
2
Ai i=1,...,]
2 . .
AZ . i=20,...,k-j-1,



with the maximum value of HB(1,2) given by

(B
2

=1
Hy(1,2) = 51

14

Using previous notation, we now define the interclass Brattacharra distance

for two multivariate normal distributions as

C = l-tr{

Al + A2 —16
8

T
5| 81281, } + H(LD)

and the transformed Bratachara distance C as

B
1 B(Al + 1\2)13":..("1
Cy =g tri 7 J (BS1,815

T.T
B)} + HB(l,Z)

Let Y1 be the only non-zero eigenvalue of

\ -1
Al + A2 5 s T
2 12712
r (Mt _1
Note that Yl = (312 5 (312

Ay + A, -1
with corresponding eigenvector X ={\——35— 612.

Thus by the remark following lemma 6, it follows

-1
o 1o [fitfa] +;1n}7max < c
B~ 8 12 2 12 2 2 -

We now prove

Theorem 6: Let B be a k by n matrix of rank k which extremizes
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Then it is necessary B satisfy an equation of the form

T
9H_(1,2)
B ? 1 T T T T,-1 T.T T,-1
—=] = —4-{6126123 - (A1+A2,.B [B(A1+A2)B ] (36126123 )}[B(A1+A2)B 1
T T.-1 1 T T,-1 T T.-1
+ (A1+A2)B [B(A1+A2)B 1 --E[AlB (BAlB ) T+ AZB (BAZB ) 7]
=0

Proof: Immediate by Lemmas 3 and 5
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INTRODUCTION - This note considers one particular aspect of the feature

selection problem, that resulting from the transformation x = Bz, where B

is a k by n matrix of rank k .and k £ n. Such a transformation can be
considered to reduce the dimension of each observation vector z. It is shown
that in general, such a transformation results in a loss-of information. In
terms of the divergence, this is equivalent to the fact that the average
divergence computed using the variable x 1is less than or equal to the average
divergence computed using the variable z. Similarly, a loss of information

in terms of the probability of misclassification is show? to be equivalent to
the fact that the probability of misclassification computed using variable x
is greater than or equal to the probability of misclassification computed using
variable z.

First, the necessary facts relating k-dimensional and n-dimensional
integrals are derived. Then the above mentioned results about the divergence
and probability of misclassification are derived. Finally it is shown that if
no information is lost (in x = Bz) as measured by the divergence, then no
information is lost as measured by the probability of misclassificatiom.

The above results suggest that the increase in proBability of misclassification
resulting from the transformation x = Bz can be minimized by minimizing the
information loss as measured by the average divergence. Thus the equations
necessary to maximize the average divergence as a function of B are ﬁresented.
It is shown that the information loss Between each class pair, as measured by
the divergence, can be conveniently displayed by a '""Class Separability to be
Gained Map". If this information loss is small enough for each distinct class
pair, then there is essentially no increase in probability of misclassification

resulting from the transformation x = Bz.



FUNDAMENTAL LEMMAS

We are interested in relating integrals over k-dimensional regions to
integrals over n-dimensional regions. In particular, given some n-dimensional
space Z?; we are interested in comparing the divergence or probability of

‘IF

.7 .
misclassification computed in " with the divergence or probability of mis-

s

I

classification computed in;}{, where i}, is any k-dimensional subspace of

Consider the following:

X = Bz
y = Sz
Such that
z' = (;) =Qz = (g) z
where

Q : a real nonsingular n by n matrix
B :areal k by n matrix

S : areal (n-k) by n matrix, chosen such that the rows of S are orthogonal

to the rows of B.
z ¢ a real n-dimensional vector
x ¢ a real k~dimensional vector

a real (n-k)~-dimensional vector

<

Script letters will denote a real vector space, so that

= {2} ; a real n~dimensional vector space

(:Sﬁx
It



)

{z'} ; a real n-dimensional vector space

"{x} ; a real k-dimensional vector space

{y} ; a real (n-k)-dimensional vector space

Q)
\
]

The symbol @& will denote Cartesian Product, so that

=
Note that any non zero 2z € 7ﬂ"can be expressed uniquely as

/

¢

'/

where

B = 2
‘\\.\bk |
Sk+l \
S= i ;
s
. n

and BST = 0 (and of course SBT = 0) by choice of S.



Note that the condition BST = 0 implies

(1) B(2) = B(zp)
(ii) B(Zs) =0
(111) S(z) = S(zS)

(iv) S(zB) =0

Using the above definitions and notation, we prove
Lemma 1. If ngnq), then

1(R

-1 . o

Proof: (1) Since Q 4is non singular, it suffices to show
R, ®S() = QB (®))
1 ) 1

(2) Let z' €R

1 9 S%?). Then from (i) - (iv) above,
B(z,) ,.‘VB(z )\ ! B(z, +z )
1 J Pt R T R
z' = T ‘= ;. =Q(z;, +z,)
z P 1 2
! !
5(z,) . S(z, ) s(z. +2.) B S
s . T3

R _ ~1
(3) Since B(z1 + z, ) = B(zl) € Ry, we have (z1 + 2, ) €B (Rl),
B S B B
so that

R, ® sgf') [ QB’l(Rl)



(4) Now let z' ¢ QB_l(Rl), so that there exists 2z, a member
of B_l(Rl) and Q(z) = z'

(5) But 2z = Zp + zgs and thus B(z) = B(zB) £ Rl’ so that
B(zB)
z' = Q(2) = =eR® s(D

Thus QB_l(Rl) SR @ S(P

By (3) and (5), it follows R, ® S(3) = QB (R;)

174

Q.E.D

Thus Lemma 1 relates k-dimensional regions lei B(ﬁ) with n-dimensional
regions Q—l(R1 ® S(?O). It is convenient at this time to consider the following
density functions, all related, for fixed i, in a sense, by the transformations

Q and B. Define:

pi(z) the density function of the i'th class. We write pi(z) =ﬁ’(uif25)
to denote that the i'th class is normally distributed with mean My

-7
and covariance zii.

fi(z') the transformed density function for the i'th class resulting from
the transformation z' = Qz. Thus fi(z’) = N(Qpi,QﬁaQT) and we will
use somewhat inconsistent notation in denoting fi(z') by fi(x,y)
where z' = /x) .
\ Vi
gi(x) the transformed density function for the . i'th class resulting from

the transformation x = Bz, Thus gi(x) = N(Bui,BEiBT).
It is shown in Reference 1 that
g (x) = 3 £, (x,y)dy = ﬂSfi(x,y)dy
un/ S
N o v

f



so that gi(x) is the marginal density of x. This fact is expressed in

Reference 1 as:

THEOREM 2.4.3 - If z' (a random variable) is distributed according to

N(Qui,Qi%QT), the marginal distribution of any set of components of z'

is
multivariate normal with means, variances, and covariances obtained by taking

the proper components of Qui and QﬁiQT respectively.

/ \

, . 3

o { BZiBT Bii st 4

Note that since QiiQ = | T T |
' SZiB s%—is }

the proper component of inQT is BiﬁBT, and the proper component of Qui
is Bui.
J, ’
- \\
LEMMA 2 - Let R, < B(¥). Then g.(x)dx = ) p.(z)dz.
—_— 1—-"7 R B_l(R ) i
1 1
Proof: lé;gi(x)dx'= R (;(L)fi(x,y)dé)dx (by definition of gi(x)
1 13y
= ~E.(x,y)dxdy (by definition of the integral)
R, 4S(5) i
1 ;4
. , f.(z")dz!
T Mres
= .5; pi(z)dg (by definition of fi(z') and pi(z))
QS (Rlﬂ S(}))
= p. (z)dz
st ® (by LEMMA 1)



SUFFICIENT STATISTICS AND THE PROBABILITY OF MISCLASSIFICATION

We asstye the existence of m~classes, each N(ufii). Let the vector
spaces gfig , and C}( be as in the previous section. Using a maximum liklihood
classification procedure, it is possible to partition each of the above spaces

into disjoint sets, and thus compute the probability of misclassification.

Thus let
pmc : the probability of misclassification in ép'resulting from a
maximum liklihood classification procedufe.
4
pch ¢ the probability of misclassification in é' resulting from a
4
maximum liklihood classification procedure.
pmcy : the probability of misclassification in ’}/ resulting from a

maximum liklihood classification procedure.
We are interested in comparing pmc, pmcq, and pmey. It will be shown

that

pmep > pmc = pmc

Q

REMARK: If pmc, = pmc, then B is said to be a sufficient statistic (for

B
the probability of misclassification)

It is convenient to define the following sets:
Ni(z) = {zlpi(z) > pj(z) ; j=l,e¢.,m and j # i}
N, (z") = {z'|£;(z") > fj(z'),’j=1,...,m and j # i}
Ki(X) ='{x|gi(x) > gj(x) ; j=l,...,m and j # i}’

Initially, consider the two class problem corresponding to the case m = 2,

and assume (to be true up to a set of measure zero) that



‘\\
QN
[}
2
'_l
C
2
N

Then by the definition of the probability of misclassification as dis-

cussed above (Reference 1)

. /“"
\
S D
pme = 1 Pl(z)dz + N P (z)dz
2 l
C '
pme :3 f (z )dz'! 'f%'fz(z')dz'

pmey =73 x)dx + 1;
2 1
REMARK - We have omitted the apriori probabilities, as they will be assumed equal.

gz(x)dx

Moreover, it is shown in Reference 1 that if £/ = M U M2’;7' = Mlu MZ’

XY kS

and '7[ = L, VL,, then

pmc < f)p (z)dz +-:Sp2(z’)dz
2 l

’\ ’ (
' '
pme, £ f (z ydz'! +-ﬁ-f2(z )dz!

Q

S5
gl(x)dx + Kng(X)dX
2

<
PHC = g

REMARK ~ Since Q 1is nonsingular, it is easily verified that

Pi(Z) _ £,(z") _ £,(Q2)
Pj(Z) - fj(Z') - fj(QZ)

i,j=1,...,m

so that the "liklihood ratio" is invariant under a non-singular transformation,

and thus



-
Ni = Q(Ni)’ which results in

pmc = pmc

Q ’

since for an arbitrary set M,

¢

B%Pi(z)dz = Q‘(M)fi(z')dz'

THEOREM 1 -~ Assuming the existence of 2 distinct classes, then

pmc.

g @ pmc = pmc

Q

with equality <= fB—l(Kz) = N, and B—l(Kl) = N, a.e. (a.e. denotes almost every-

where). S S 2

P-roof: pme, = K2gl(x)dx + Klgz(x)dx

C és
= _1.> &(z)dz + 1= pz(z)dz (by Lemma 2)
B T(K,) B "(K,)

[\

pmc

where the last inequality follows from the definition of pmec and the fact

B‘l(Kz) y 3‘1(K1) B’l(x1 U K,)

5 leh
)

It
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It is immediate that pmcy 2 pme with equality <=> B-l(Kz) =N, and

-1
B (Kl) = Nl a.e.

COROLLARY 1 - Assuming the existence of m distinct classes, then

pmc, 2 pmc = pmc

B Q

with equality <= B—l(Ki) = N,
- K

1 denote

Proof: Let

in Reference 1), by definition of pmcy,

pmc, =

i=1 -

£

1=l}7 -N.Pi

= . pi(z)dz

|

i
'Y

X,)
(z)dz = pmc

2

o1

REMARK - Note that B-l(Ki) = Ni is equivalent to
=> .
pi(Z) > pj(Z) < gi(BZ) > gj(BZ)
o a.e.
which is certainly implied whenever

p(2) g, (82)
pj(Z) B gj(BZ)

a.e,

3y i=1,...,m, a.e.

the set theoretical compliment of Ki

j=1l,.0.,m
3#i

j = 1lye.e,m

j#i

Q.E.D.

Then (as

Q.E.D.
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COROLLARY 2 Assuming the existence of m distinct classes, then

pmc,, 2 pmc

B

with equality <= the following holds a.e.

Pi(z) > pj(z) <=> gi(Bz) > gj(Bz) = 1,...,m

it

1<i<sm
Lemma 2 and Corollary 2 suggest that in a sense, (with respect to probability
of misclassification) we have never left the original spacelg”. The trans-
formation x = Bz, combined with the gi(x) gnd the maxim;m 1liklihood
classification procedure can be thought to define a decision function which
partitions the original space 3?/ into disjoint sets. The transformation B,
in this sense is used essentially to quicken the classification procedure.

Equivalently, the transformation B can be considered as a rule which results

in the grouping together of points (vectors) in the spaceI;V. For example,
/

4
let xbe , and define

S = {z|z € 3; and Bz = Xo}

o ~
so that members of the space 4?’ are grouped together in the set S. Yet
Y

associated with gl is only one particular class, namely that class into
which X, 1is classified using a given classification procedure (assumed to
take place in;z{). Thus we can express Theorem 1 verbally by saying that in
general, the grouping together of vectors results in a loss of information.

The above discussion suggests the possibility of defining (conceptually)

general classification functions of the form
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hi(¢(z)) i=1,...,m

where ¢(z) is a vector, with ¢ not necessarily being a linear transformation.
Certainly, to be useful, such functions must possess the following properties
(i) The class of functions hi(¢(z)) i=l,...,m

is more easily evaluated than the

class of functions pi(z)

N p;(z)  h (d(2)) . o
(ii) 'Ij = %lpj(z) - hj(q)(z))ldz is small for all i,j.

)

Note that the size of Ei;j can be thought of representing the information less

between classes i and j, resulting from the transformation ¢(z). Certainly

I =0 Vi,j implies

3

p;(2)  h(6(2))
p;(2) - b (9(2))

a.e. \/i,j

Thus if a classification rule is defined by

®(z) be classified into class i if and only if

hy (6(2)) > h, (6(2) 3=1,...om
i#

1<i<m,

no. information is loss by using the generalized classification functions

hi(¢(z)) whenever Ilj =0 Vi,j.
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SUFFICIENT STATISTICS AND THE DIVERGENCE

We begin with the necessary definitions, with all notation consistent
with the previous two sections. Consider the existence of two distinct classes,
and define as in Reference 2 the mean information for discrimination in favor of

population one against population two (for a particular vector space) as

S- pp(z) Py (2)
1(1,2) = . pl(z)logazfzy dz = ‘)Pl(z)loggz?zy dz

’ £GEY o sE)
.2) = Jfy (2" logg vy da' = )y (2D logg Ty 4

; S g, () < gy (x)
I5(1,2) = - gl(x)log§;?§7 dx = )gl(x)log———gj-dx

:}{ g, (
Then the interclass divergence (again in a particular vector space) is defined
(Reference 2) as

D(1,2) = I(1,2) + I(2,1)

Dy(1,2) = 1,(1,2) + I,(2,1)

Dg(1,2) = I5(1,2) + I(2,1)

We will show that

DB(l,Z) < p(1,2) = DQ(l,Z)’ with equality

p,(2)  g,(B2)
p,(2) &, (Bz)

if and only if a.e,

It follows immediately from Corollary 2 of Theorem 1 that DB(1,2) = D(1,2)
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implies that pmec, = pmc

B
To prove the desired inequality, it is necessary to state the following

theorem and corollary from Reference 2.

THEOREM 2 (KULLBACK): I(1,2) is almost positive definite, ie I(1,2) 20

with equality <= pl(z) = pz(z) a.e.

COROLLARY 1 pl(z) Y 1(z)dz
pl(z)log-hz—y dz 2 ( )pl(z)dz)logT;——ZETE;— with

Pl(z)
equality iff 5;?;7 =1 a.e,

REMARK: The above Theorem and Corollary also hold if IB(l,Z) or IQ(1,2)

and the corresponding density functions are considered.

We now prove
| £,(z") g (B2)
EOREM 3 - I > i i i =
TH 3 Q(1,2) IB(1,2) with equality if and only if fz(z') gz(Bz)
Thus in particular IQ(l,Z) = I1(1,2).

S 1 £, (2" '
PROOF: (1) IQ(1,2) = ;;fl(z )logg—zzry dz

¢ S’ f (Xsy)
= fl(x,y)logg—(~:—ydxdy

/ 4 f (X,Y)
= ;g (- J fl(X,Y)10g§~G:'3ﬂy)dx

2.
/

(2) It is shown in Reference 2 that Corollary 1 of Theorem 2 holds

for any pair of density functions. Thus define

f (x,y) fl(x,y)
S cror

hi, 62



and
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fz(x’Y)
h = -
2,x T 5@
(3) It follows from the corollary that .S;
h d
5 | by () y \‘ ( .--gfal,x(Y) y
e ), _(y)log 77— dy 2/, y)dylog¥
nyl Lex hy O \ oy by (Y
j ! ﬂf’
so that
o
> Je s
3 £ (xyy) < iy £, (x,y)dy
,f fl(x,y)log——?§~§y— ‘_i}fl(X’Y)dy o fz(x,y)dy
4 Y 5
and for all x, we have ;
)
S £, (x,y) g1 (x)
) £ (x,y)log ———= dy 2 g.(x)1log =75
ﬁf 1570108 £ 509 1 8, (%)
(4) Thus from (1) and above, we have
S’ g1 ()
IQ(1,2) > gl(x)log ( ) dx = IB(l,Z)
£,x,y) 8 ()
(5) Now, if fz(X,y) = gz(X) , we have
‘\ o
S g £1(x9) Y g1 (%)
f (X,y)log Er?;;—jdxdy =’r 2,lf (x,y)log-g—?-y dxdy
P " 2
! "\ﬂj .
N g1 (%) / Y
- 1 __________
8 Bl eIy ) dx
& ,’
£y g1 (®)
j gl(x) log E—(T dx
’)

(
Q-E-Do
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COROLLARY 1 DQ(1,2) = D(1,2) = DB(1,2)
pl(Z) gl(BZ)
pz(Z) B gz(BZ)

with equality if and only if a.e,

Remark: If DQ(1,2) = DB(1,2), then B is said to be a sufficient statistic

for the divergence.

We now investigate the condition

py(z)  g,(B2)
p,(2) g, (B2)

a.e.

Note that if ’il is the covariance for the first class, then

% T < T 7
) B2.,B BZ,S e €1y \
QZ,Q = , = |
% gt 2. st \ !
5% B 57,8 \Ca1 Cpp
here C., = C
where L2 T %21
Similarly,
9 ST 2 T ) )
BZ-,B BES ;M Dy, \
inZQT = bz '
G T < 1 | % ’
S B 578 \ Pa1 Dy 7

where Diz = D21. Letting |Q:i1QT| denote the determinant, it follows

Ve Ty . ) -1
02,07 = legylaley, - 05y €1y ¢
- of| = . _ -1
leZ,0| = Dy5141D,y = Dyy DIy D,



. T
To see this, consider QiulQ under the nonsingular transformation

Q2 ,Q"—> re¥-Q'R"

wheré R = | so that |R| =1
-1 {
~€21%11 i/
and i,
s oy l/cll 0
la£. Q7| = [rRe~ Q'R =
1 1 \ o C,,~C,.CIic
227€21%1%12,

AN
Al Z AT - cs . \ .
so, since RQ 1Q R is positive definite, so is the symmetric matriXx
c,.-C,. Clc
22 721 "11 “i12°

Now define the positive definite matrices
Je

3 -1
Cy2.1 = G922 = €21 €171 €12
D =D D D'l D
22¢1 ~ Y22 7 Y21 "11 “12
so that
T
01| = legy| 16y,
Ty, _
IQZZQ l - |D11| IDZZ’lI

Now define the matrices H1 and H2 by



-1
11 C1o 22-1 €1 C11

—l
2201 21 ll

11 12 2201 21 "11

-1
22-1 D,y Dy1

(o st o
|

It is easily verified that

_1 0
T,-1 ll
@ZqH! - \
0 0
and that
-1
. D 0
P - 11
@%,QH 7" =
0 0
' = i
Now let u i = Qui and uxi Bui
so that
@' - uT@EED TG - wp)
and also

-1
€11

-1
D1

+ H

| '
(Z —Ul) Hl

o gt
(z u 2) H,

1
C12 €201
1
Cr2e1 /
\
1 \
- \
Dy Dyge1 |
Droe1 i

(x - W, )Cll(x—ux)

(x = u )'DI (x-w )

(' - u'y)

(z' - U'Z)

18
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Now, by definition,

-~

A -
@ (02,07 exp [-4 - @Zdh l(Z'-ui)]
5@ QT o714 exp [~ hz-upT@E, D I"u3) ]

[

- 1, T -1 " i ,. 1] ] T 1 \J .
/.1/ exp[— &(X"llxi) Cll (X—le)] exp Z-" /b’(z "111) Hl(z -Ul)]

D351 1Dy, :
I i - ' % T
lclll |szf1| exv!—— Qix—uxz)TDll 1(x—uxg :}exp L; #(z'-uy) "Hy(2'-u3)

1]

2 i _ b1y T 1_q, 1
e tn22,11> i D Ay

82(x) | |C22.1

I B T :
exp| - % (2"-u}) H2<z'—u§>]

£,(z") } p,(2)
fz(Z') p,(2) ’

Since it follows from Corollary 1 of Theorem 3;

THEOREM 4 - Dp(1,2) = D(1,2) if and only if

- '/1 . | . ) T 7
i} _ b vt 10
ID59,1! exP’. (z'=1y) H, (2 “1)-1 -1
oy T T
|C22'1L expl"— Q(z'_ué) Hz(zv_ué)’]

for all z' = Q(z).

Corollary 1 - DB(1,2) = D(1,2) if and only if Hl = H2 and HlQ(ul—uz) =0

< T -1
-— = = = =4— —
Corollary 2 le 22 > Da(l,Z) D(1,2), where « 1 (ul uz)

2
Proof: 1 2

that C12 = D12 =0

=> by selecting each row vector of § orthogonal to ul—uz,

G.E.D.
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REMARK - Theorem 3 reveals the importance of the equality:

£,(z") _ g, (Bz)
£,(z") ~ g,(Bz)

we note the following Lemma, proved initially by Halmos:

LEMMA 3 - If g is a real-valued function on% then

5 g(x)g,; (x)dx = 'f5g(BZ)pi(Z)dz

P7es

g8 f i=1,2

Using Lemma 3, it is easily verified that

p,(2)g,(Bz) p,(2) g, (B2)
D(l,2)-DB(1,2) = - pl(z)log ;;?ZTEITEZT + pz(z)log ;IZETEE?EZY dz

i

we now prove

LEMMA 4 S(gl(Bz)pzu)-gz(Bz)pl(z)) dz =0

Proof: Sgl(Bz)pz(z)dz = bgl(x)gz(x)dx

&

= ngz (x) gl (x)dx
/X’v

= f)gz(Bz)pl(Z)dz
o

y

v

Q.E.D.
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THE AVERAGE DIVERGENCE

The interclass divergence is a measure of the degree of difficulty of
discriminating between two classes or populations. However, the general
feature selection-classification problem involves measuring the separation
between m~classes. This section presents the average divergence of m-classes
as a natural generalization of the interclass divergence. The average
divergence is shown to be a measure of the separation between m—~classes.
Finally, the average divergence is related to the probability of misclassificatioon.
We assume three distinct classes, normally distributed, although the
generalization to m distinct classes is immediate. Following a procedure
similar to that of Reference 2 for the interclass divergence, define:

qipi(Z)
qlpl(Z) + quz(z) + q3p3(z)

P(Hilz) = i=1,2,3

where 9 is the apriori probability of =z belonging to class i, Thus it

follows:

1 Pl(z) P(Hllz) a1
= - log —
°8 35, - 1B F@M,[z) T T8,

p. (2) P(H, |2) q
log l( ) = log-———l——— - 1og-—l
P3iz P (H,|2) 3
Now define the functions: 2
' p,(2) pl(Z) pl(Z)
sl(z) = log E;?EY_+ log E;?EY = log-gzzzyggz;)
p%(Z)
52(2) = 198 3 G, &y
P%(Z)
53(2) = 198 5 G5, (@)
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It is easily verified that sj(z) = max'{sl(z), s2(z), s3(z)} if and only if

pj(Z) = max {p,(z), p,(2), p4y(z)}.

Thus sj(Z) > si(Z) i=1 to 3 implies it
(++9)
is more likely 2z belongs to class j. We define sl(z) as the information

in 2z for discrimination in favor of é&lass 1 against class 2 or 3.

The mean information for discrimination in favor of class 1 against class 2 or

3 as measured by class 1 is

o

I(1:2) + I(1:3) = ”Spi(z)si(z)dz
¢

Similarly, the mean information for discrimination in favor of class 2 against

1 or class 3 as measured by class 2 is

. "
I(2:1) + I(2:3) = :)pz(z)sz(z)dz
J

Finally, the mean information for discrimination in favor of class 3 against

class 1 or class 2 as measured by class 3 is

I(3:1) + I(3:2) = é>p3(z)s3(z)dz

]

Thus we define the average divergence D as

D

I(1:2) + I(1:3) + I(2:1) + 1(2:3) + I(3:1) + 1(3:2)

[T(Ll:2) + T(2:1)] + [I(1:3) + I(3:1)] + [T(2:3) + 1(3:2)]

p(1,2) + D(1,3) + D(2,3)
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where D(i,j) 1s the interclass divergence between classes i and j. In
general, for m distinct classes,

N <,

D= - D(i’j)

m m
i=1l j=itl

Thus the average divergence D is a measure of the total divergence between
the classes 1 thru m, and as such is a measure of the difficulty of discriminating
between them.

Using the notation of the previous section, it follows the k-dimensional

B-average divergence resulting from the transformation x = Bz 1is

mfl m
<7
= Z -
DB i=1  j=it+l DB(l’J)

We now prove

THEOREM 5 -~ D = D, => pmc = pmc

B B

Proof: (1) Assume D =D By Corollary 1 of Theorem 3, D(i,j) 2 DB(i,j) \;i,j

B*
so that is must be true D(i,j) = DB(i,j) \/&,j

(2) By Corollary 1 of Theorem 3

pi(Z) . gi(Bz)

pj(z>=gj(3z> a.e.  ¥i,]

D(i,j) = DB(isj) <=>

(3) By Corollary 2 of Theorem 1

pme = pmc,
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FEATURE SELECTION - AN EXAMPLE FROM THE Cl1 FLIGHT LINE.

Theorems 3 and 5 suggest that a possible feature selection criterion is

the B-average divergence DB5 Since D-DB 2z 0, the difference D-DB is a

measure of the information lost in performing the transformation x = Qz.
Moreover, Theorem 5 suggests that the difference D—DB is a measure of the
difference of two classification maps (for the same field) - one generated
using maximum likelihood classification on the gi(Bz). By Theorem 5, the two
classification maps will be the same if D—DB = 0. Also, by Theorem 1, the
classification map generated using pi(z) is the best classification map
possible (with respect to probability of misclassification), so it makes

sense to try and make the classification map generated by the gi(Bz) agree

with that map generated by the pi(z)‘ Thus our feature selection criterion

is stated simply as
mgx Dp -

where B is a k by n matrix of rank k. If the m classes are normally

distributed with means ui and covariances Ai’ then it is shown in Reference

3 that
m-;l ?m
«<
S SN
Dy = 41 j=i+1 Dps3)
m
Sl Z Ty-1(gs 3T n(m-1)
= Ser{ {7 [BABT) T (BS;B) ]} - =5 k
where
m
_Z T
%7 gmalhy * 0astey]
141
=y, - M
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oD oD

Let =2 denote the matrix whose i-j th element is —— , where b,. is
oB abij ij

the i-j th element of B. Then it is shown in Reference 3 that

m
BD>T
B\ _ £ T T T, -1 T T.-1
( 5B =3 [SiB AiB (BAiB ) (BSiB )](BAiB )
/ 3D\ T
Using the above expressions for DB and \-sg—' , it is possible to

maximize DB using any of the many existing optimization algorithms. One

can graphically display "separability" using what we will call a 'Class
Separability to be Gained Map" (Reference 5). Consider a coordinate system
whose ordinate (for a given value of k) is DB(i,j) where now B is assumed
to maximize DB. The abscissa is the value of D(i,j), in the original
space, and for a given i-j pair, represents the separability between classes
i and j. Since D(i,j) 2 DB(i,j), the distance of a given point from the
diagonal line D(i,j) = DB(i,j) represents the separability to be gained for
that class pair. Thus for a given class pair, its location along the abstissa
is fixed, and as k increases, the point corresponding to that class pair can

only move vertically toward the diagonal boundary. Obviously, for large

enough k, all the points will lie on the diagonal boundary.
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SYMAT, COVAR - TEST PROCEDURES FOR MATRIX CALCULATIONS
" W. L. Morris

University of Houston

The following is a description of the FORTRAN subroutine SYMAT and
relatéd FORTRAN subroutines. This description is intended to supplement the
comment statéments that appear in the accompanying FORTRAN program listing.
Included in this listing is a DEMO PROGRAM in which various applications of

subroutine SYMAT ére illustrated by particular examples.

Subroutine SYMAT operates on a real symmetric matrix A(N,N) and
produces an orthogonal matrix W(N,N) of approximate eigenvectors of A
along with two vectors C(N) and R(N). The components of C are approxi-
mate eigenvalues of A and the components of R are absolute error bounds
for the approximate eigenvalues. For example, if for some index I the
values of C(I) and R(I) are 10.0 and 10.0001 respectively then there
is an eigenvalue of A in ;he intérval (9.9999,10.0001), or, equivalently,
the maximum relative error in C(I) is R(I)/C(I) which in this case is
0.00001, that is, C(I) is correct to within one part in 100,000. The unit
eigenvector associated with C(I) is the Ith column of W. 1In the output of
SYMAT the entries in C are ordered with C(1) the largest and C(N) fhe
smallest in absolute value. The entries in R as well as the columns of W

are arranged to correspond with the indexing of C.

Another input parameter in SYMAT, denoted by REL, allows the user to
specify a desired relative error in the approximate eigenvalues of A. The
actual relative errors produced by SYMAT are a function of the matrix A and
the word length of the computer in which SYMAT is executed. The best relative
errors are produced by assigning to REL the value of zero. When executed on
an IBM-360 using single word (four byte) arithmetic the smallest values of the
relative errors that can be expected conséstently are on the order of
0.000005, but this could be improved by executing SYMAT in a computer with a
longer word length or by coding SYMAT to operate in double word arithmetic.

/—&



The theoretical basis for SYMAT is presented in the reference:

W. L. Morris, Inclusion theorems for a section of a matrix,
Numer. Math. 18(1972), 457-464.

In esgence SYMAT is an iterative algorithm in which the problem of finding
_eigenvalues and eigenvectors of a real symmetric matrix is transformed into
an equivalent problem of finding eigenvalues and eigenvectors of an infinite
sequence of matrices of order two. Within SYMAT it is important that rounding
errors be carefully controlled, especially in computing inner products of
vectors. For this reason function SUPSUM is used to add the components of a
vector which are ordered by subroutine ORDER. These subroutines are used
within subroutine MATMUL which computes matrix products. In addition to being
used with SYMAT, each of the above subroutines can be used in other applications.
The remaining subroutine called by SYMAT is subroutine MINDEX which is used to

select the order of operations wfthin SYMAT.

The DEMO PROGRAM also contains a subroutine COVAR which uses subroutine
MATMUL to compute the covariance matrix (dedoted by A) of a data matrix
(denoted by X). Since a covariance matrix is symmetric it can be analyzed
by uéing subroutine SYMAT. Also the DEMO PROGRAM displays the following
applications of the output of subroutine SYMAT:

1, an approximate inverse of A is computed;

2. a condition number of A 1is computed;

3. an approximate determinant of A 1is computed along with a bound

for the absolute error in the computed det(A); and

4, the row norm of WTW - I is computed.

These four items are computed in a straightforward way. If W is an orthogonal
matrix of eigenvectors of A and D is a diagonal matrix of (properly ordered)
eigenvalues of A then AW = WD so that A-'1 = WD-le. The spectral condition
number of A is the ratio of the largest to the smallest eigenvalue of A.

The ﬁagnitude of the condition number indicates the quality of the computed
inverse of A, The determinant of A is the product of the eigenvalues of

A so that the approximate eigenvalues, C(I), along with the error bounds,
R(I), can be used to compute det(A) and its associated error bound. Finally,
since W 1is orthogonal the row norm of WTW ~ I is computed and indicates

the quality of the computed eigenﬁectors of A.
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ABSTRACT

The Nearest Neighborhood (NN) rule is nonparametfic,
or distribution free, in the sense that it does not depend
on any assumptions'about the underlying statistics for its
application. The k-NN rule is a procedure that assigns
an observation vector z to a category F if most of the k
nearby observations x, are elements of F. The Condensed
Nearest Neighbor (CNN) rule may be used to reduce the
size of the training set required to correctly catagorize
all the elements of the training set.

The Bayes risk serves merely as a reference-~the limit
of excellence beyond which it is not possible to go. The
NN rule is bounded below by the Bayes risk and above by

twice the Bayes risk.



Let us begin with a brief explaination of the dis-
crimination problem. For convenience let us consider the
two population case. Let x_.x

1°"72
g-variate distribution F , ST CYRRES be samples from the

;...xm be samples from the

g-variate distribution G, and z be an observation vector
such that z is an element of the union of F and G. The
problem is to decide whether z is an element of F or of G.
In [1] the discrimination problem is classified in three
catagories: ‘

~ 1.) F and G are completely known.

2.) F and G are known except for the values of one
Oor more parameters.

3.) F and G are completely unknown, execpt possibly
for assumptions about existance of densities,ect.

In this paper we will concern ourselves with the sol-
ution of category three of the discrimination problem by
means of the minimum distance classifier, commonly referred
to as the nearest neighbor (NN) rule. Fix and Hodge [1]
and [2] investigated the kn-nearest neighbor rule. It
assignes to an unclassified observation vector the class-
ifacation most heavily represented amoung it's kn nearest
neighbors from a previously classified set of points.

They established the consistency of this rule for sequences
k => o0 in such a manner that kn/n-’o as n-»eo. In [3]

T. M. Cover and P. E. Hart showed that for any number

n of samples the single-NN rule (kn=l) has a strictly



lower probability of error than any other kn-NN rule in
those distributions for which simple decision boundries
provide complete separation of the samples into their
respective catagories. In [4] P. E. Hart proposes the

use of the Condensed Nearest Neighbor rule (CNN) which
retains the basic approach of the NN rule without imposing
the stringent storage requirements of the NN rule.

What are the best results we can possibly obtain
from these proceduresé In [2-6] in one way or another
the authors cbncludedlthat the minimum probability of
error of the NN rule is bounded below by the Bayes
probability of error and above by twice the Bayes pro-
bability of error. Where the anés probability of error
is the minimum probability of error over all decision rules
taking the underlying probabilitybstructure into account.
Then if the dénsity functions £ and g corresponding to
F and G are known, the discrimination should depend only
on f£(z)/g(z)where z is an observation vector. With the
following rule for some c> O

If £(z)/g(z)» ¢ then z¢F

If £(2)/g(z)<c then z£G

If £(z)/g(2) 2 ¢ then the decision may be made in an
arbitrary manner.

This procedure known as the likelihood ratio procedure,
L(c), is known to have optimum properties with regard to

control of probability of misclassification. _The two



choices of ¢ suggested are:
1.) Take c=1

2.) Choose c so that the probabilities of error
are equal.

In [1] Fix and Hodge define the idea of consistency
in the sense of performance characteristics, in the sense
of decision function, and with the likelihood ratio. They
also proved the following theorem:

1f f(z) and §(z) are consistent estimates for £(z)

and g(z) for all z except possibly zGZf g where

Pi(zf,

L(c). _
Where L*(c,f,é) is the likelihood ratio of the estimated

)=0 i=1, 2, then L (c, £, §) is consistent with

values %(z) and §(z) of the density functions £(z),g(z).

The problem now is to find consistent estimates for
f and g. In [1] on pages 13 - 20 two procedures are pro-
posed and of the two proposed the second or alternate
procedure is recommended by the authors. This is a quote
of the paragraph on page 20 of [1] in which the authors
explain the alternatevprocedure.

"Choose k;, a positive integer which is large but small
compared to the samplé sizes. Specify a metric in the
sample space for example ordinary Euclidean distance. .
Pool the two_samples and find, of the k values in the pooled
samples which are nearest to z, the number M which are X's.
Let N = k-M be the number which are Y's. Proceed with the
likelihood ratio disériminatidn, using however M/m in place

of £(z) and N/n in place of g(z). That is, assign Z to



F if and only if

n
M {c g-.
m n

If the above procedure is combined with the CNN rule
proposed by P. E. Hart we‘develop the following algorithm.
Before describing the CNN rule let us define a consistent
subset as a subset of the training set which, when used as
a training set for the NN rule, correctly classifies all
of the remaining points in the training set. A minimal
consistent subset is a consistent subset with the minimum
number of elements. The CNN rule uses the following al-
gorithm to determine a consistent subset of the original
sample set. It should be noted, however, that this sub=-
set is not necessarily minimal. We assume that the
original sample set is arranged in some order; then we
set up bins called STORE and GRABBAG and proceed as follows.

1.) The first sample is placed in STORE.

2.) The second sample is classified by the NN rule,
using as a reference set the current contents
of STORE. If the sample is classified correctly
it is placed in GRABBAG; otherwise it is placed
in STORE.

3.) Proceeding inductively. the ith sample is clas- .
sified by the current contents of STORE. If
classified correctly it is placed in GRABBAG;
otherwise it is placed in STORE.

4.) after one pass through the original sample set,:



the précedure continues to loop through GRABBAG
until termination which, which can occur in one
of two ways:

a.) The GRABBAG is exhausted, with all its
members now transferred to STORE.

b.) One complete pass is made through GRABBAG
with no transfers to STORE.
5.) The final contents of STORE are used as training
points for the NN rule; the contents of GRABBAG
are discarded.

Next we choose a positive odd integer k which is large but
small compared to the sample sizes. With the Euclidean
distance we find the k values in the pooled samples which
are nearest to z. Let M denoté the number of samples
belonging to F, and N=k~M be the number of samples belonging
to G. Proceed with the likelihood ratio discrimination, |
using however M/m in place of £(z) and N/n in place of g(z).
That is, assign z to F if and only if

N

Ercl
m n .



some of thé advantages of the NN rule are that under
very mild regularity assumptions on the underlying statistics,
for any metric, and for a variety of loss functions, the
large-sample risk incurred is less than twice the Bayes
risk, and if the populations are either not well known;
or have very different covariance matrices; or if the
discrimination is one in which small decreases in probability
of error are not worth extensive computations, then the
k-NN rule with k 2 3 should be used.

some of the disadvantages of the NN rule are that if
the population to discriminated are well known, and have
been investigated to establish that the normal distribution
gives a good fit and that the variance and correlations do
not change much when the means are changed then better
results can be obtained by the linear discriminant function.
From a practical point of view, however, the NN rule is not .
a prime candidate for ﬁany applications because of the
storage requirements it imposes. Also in using the CNN
rule to find a consistent subset and if the Bayes risk is
high then STORE will contain essentially all the points in

the original sample set.



[1]

[2]

[3]

[4]

[5]

[6]
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' Computational Forms for the Transformed Covarience

Matrix of Multivariate Normal Population

Let B be a kxn matrix and use the notation ( )* for the conjugate trans-
pose, In our case the conjugate transpose is simply the transpose, denoted

by ( )T. The properties of the conjugate transposé used here are:

B%*% = B

(A + B) = A% + B#*

(aB)* = aB* where a is a scalar, a, its conjugate

(BA)* = A*B*

BB* = 0=> B=20

The following matrix equations will define the generalized inverse of B. Let

X be an nxk matrix having the properties that:

BXB = B
XBX = X

(XB)* = XB

(BX)* = BX

Then X is called the generalized inverse of B, denoted by X = B*, It
can be proved that for any B there is such an X, in fact a unique X, [1]

+
Some of the properties of B. are:

H

B =3B

* +%

B‘+ = B

BE+ =1 if B 1is kxn of rank k

+
BB and B+B are each idempotent (XX = X)

+ -1+
(aB) = a 1B- where a is any non zero scalar



* + %

88y = n'B
% [

If B is normal (BB" = B'B) then B'B = 38" and M1 = @H"

k. 4 % *
(BB*) BB = BB

* % % *

= )t = " @HT
0= BaT=0

+ A-l if A is non=-singular

> g =

We are interested in (BiBT)_l, which exists if we restrict ourselves to a

matrix B which is kxn of rank k. For non-singular matrices (AB)-]' = B_lA'-:l

but unfortunately this result does not hold in gemeral for generalized inverses.

N

A necessary condition that (AB)+ = A 1is that A+A and BB+ comnute. A

sufficient condition that the equation hold is that A be of full column
rank and B be of full row rank. The following are necessary and sufficient

conditions that (AB) = B A':

+ % K % + % *
A'ABBA =BB A and BB A AB = A AB

* *
A'ABB and A ABB+ are hermitian (X = X)
* * %
ataBs™A"ABBY = BB A'A

* %
ATAB = B(aB)*AB and BBTA" = ATaB(aB)t

+ 4+ 4+
* +

+ BTBT+

Noting the symmetry of B+B and BB+ we have B B = T"'BT +

and B = BB = I.

Thus in our case some matrices for which the reversal rule does hold are:

(BTB)+ - B+BT+

(BBT)+ - BT+B+
(L B)+ =8t 71 for non-singular X~ .

(= BT+)+ = BT 571 for nonsingular % .

(B8 7_)+= T_lB+ if 2 is unitary and B 1is rank k.

e

(BT+Z)+= Z_lBT if 2 is unitary and B {1s rank k.



If J commutes with B'B then B2 BIBIT £~

BB+B L x -1B+ = BB+BB+ = I. Thus in the case of (BZ BT)-l we have a

gt =gz '8 = 15t =

sufficient condition for the reversal rule to hold. The question becomes,
how far off is BT+ Z.—1B+ from (B Z.BT)-l. The following theorem is a

useful tool in answering this question:

A necessary and sufficient conditton for the equation AXB = C to have
a solution is that

astests = ¢
in which case the general solution is given by
x = atcs" + v - ATavest
where Y 1is an arbitrary matrix of the same dimension as X.
Applying this theorem to the equation (B 2 BT)(B ZBT)_l = I and using
the preceeding facts yields:
(1) @B BT)_]‘ = It y ~1p*t 4 gT* z'l(I - B+B)Y_ for some Y. [7]

1

Using the fact that A "A = I we find that Y must satisfy the equation:

s gt e s sy - 3T s gteyye 28 = 1

which simplifies to

@ 371 la«stmyves 8T =1 - 3™ 2 7lts 28T
while, since also AA_1 = I,Y must satisfy:
@z ehHe™s Bt 3T sy - 3™ s letey) = 1

which can be written as

(3) B X B'3 2'1(1 - B+B)Y =1-BZBB Z_1B+.



Applying the same theorem to (B Z_B+)(B Z.B"”)-1 = I 1t can be shown that:

BT 5Lyt o

@z H1 - =@zsHt-szsh.

In the case of divergence we would be satisfied to solve the problem for

B+ = B‘T or even for B = (IR’O) where Ik is the kxk identity and 0 1is
the kx(n-k) zero matrix, since in [5] it is shown that in the equivalence
class where maximum divergence occurs there is a B such that B+ = BT and
from [6] we know that any such B can be written as B = Tu where T= (Ik,O)

and U is an nXn unitary matrix.

. -7 = J = 1 2
Theorem: Let B =1 = (Ik,O), = , a positive definite
| ' ZT 2
1 [Z4 %S S . 4
matrix, L = , Y= where Y, Zl’ and 24 are kxk, and
Zr Z Y2
5 6

23 and 26 are (n-k) x (n-k), the other matrices being appropriate sizes

so that B and YT are kxn and 2 4is nxn. Then Y = Z-l ZT satisfies

(3) above.
. + AT . .
Proof: First note that B =1 = Ik . By substltution) the equation
0 .
A _ALA o -
111 & l(In Sy -1 -1 =8
becomes
Z, 2
%2\ () @0 5 k)
t4
(1,0 T 5 . k T > I_-lo ) (, , 0 |Y¥
2 3 6
2
Z1 2 25\ (1
I = (1,0 @,,0) 0
Tz ;T 2 |
5 6



Completing the multiplication we have

. h4
0,2 I 1) =15 -2 Z,
2

Since Z pAat I, ‘Zl 24 + 22 Zg =1 and Zl ZS + ZZ 26' = 0 this yields :

T
"Zz 26 Y, =Zz 25

Since Z is positive definite so also is 2 "1 and thus 26-1 exists, (See
0
Appendix 1) Thus Y={_5 -1 5T satisfies (3). Note that any k X k
6 5

choice for Yl will be acceptable.

A CA
Corollary: If B = IU where U is a unitary matrix and I and Z are
1

as in the theorem, then Y= U 0 satisfies (3) where

313,
- 76 5

A _ A 1 - a B

F=vzv?! and Zl-ve Wl z, 25 .

/\T ~

> 2

5 6

Proof: Since T is rank k and U, unitary, the reversal rule holds and

-1 A
+ UIIT

B = . By substitution (3) becomes:

- - - la)
Go 2, @ 1Hdw 2 H-eith @y
A - - -1
-1 -Qy z hHdwy z et
Writing I as U-]'U, factoring and reassociating we have:

fwz vy i ez W hi-Inuy

-1-fwz v hifte 2 hit



el

Since jE= U Z.U-l is a similarity transformation S is positive positive
definite if and only if X is positive definite. Thus 2:6_1 exists and
the result of the corollary is immediate.

Note that U Z U—l =UZ UT is the known covarience for the transformation
Y = U X. Thus the problem of finding a B which maximizes divergence can be
treated as a variational problem on U since f is a constant. This may

further simplify the problem since the set of unitary matrices form a group.

Appendix 1:
There are several equivalent definitions of a positive definite symmetric
matrix. The definition used in [8] is:

A hermitian matrix is said to be positive definite if all its characteristic

roots are positive.
From this definition the following theorem is proved [8].

A hermitian matrix is positive definite if and only if the determinants

of all its principal submatrices are positive.

Using this theorem we will prove the following:

. Z
Theorem: If < is positive definite where 2 =| % 2 where Zl is
. Z
2 3
z 7 ‘ s -1
k x k, 3 is (n-k) x (n-k) and 9 is (n-k) X k then 3 exists.
z I\ ‘
Proof: Consider K =, where I and I are identities of
— T k n-k
Ik Z »
dimension k X k and (n-k) X (n-k) respectively and Z is a zero matrix of
T
I
dimension (n-k) x k. The inverse of the matrix K . is Z k



K2 K_1 is a similarity transformation on 2. so the eigenvalues are

preserved. Thus since 2 is pbsitive definite so also is K X K—l. Hence

1

as 2 3 is a principal submatrix of KZ.K- by the theorem quoted from [8]

2,3_1 exists since it has positive determinant.

y oz

Corollary: If Z is positive definite and Z-l 43 then 'Z6-1
T
exists., '
Z5 Z6

Proof: If the characteristic roots of J. are )\1, )\2, cees )\k thén the

- =1 -1 .- - , '
characteristic roots of Z. are )\11,)\21, coay )\kl. Thus if 2. 1is positive

definite, Ai >0 for i=1, ..., k which implies that k;l >0 in-which case

.._l " -
Z is positive definite. HenceZJSl exists by the previous theorem.



7.

8.
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In handling expressions which involve matrix inversion and multi-

" plication, the following theorems are often useful:(l)

Theorem: TIf A is a positive definite matrix, there exists a non-

singular matrix F such that FAFT = T

Theorem; If B is positive semidefinite and A is positive definite,
there exists a nonsingular matrix F such that FBFL = D and
FAFT = I, where D is a diagonal matrix whose diagonal ele-
ments are the roots of the equation det (B - M\A) = 0. If
B is positive definite, then the M\'s are all greater ﬁhan

zZero.
The expression for the interclass divergence between two classes is

-1 -1 -1 -1
(1) D(1,2) = 7 tr [(AL-A2)(Ax =AT )] + 3 tr [(A7 +A3 )86"]
where Aj (i = 1,2) is the covariance matrix for class i and § is

the difference between the mean vectors for classes 1 and 2.
The second of the above thecrems has been used(z) to simplify (1).

In (1), the covariance matrices are positive definite. However, the
term 66T is not. If results such as the two theorems above could be
applied to any of the matrices in (1), the simplifications might be more

useful. To that end we prove the following:

Theorem 1 - If § is an nxl matrix and € > O, then 66° + eI is

positive definite.

(l)T. W. Anderson, An Introduction to Multivariate Statistical Analysis
(New York: John Wiley and Sons, Inc., 1953), pp. 339-3GL.

(2)0. Chitti Babu, "On the Application of Divergence to Feature Selection
in Pattern Recognition," IEEE Transactions On Systems, Man, and Cyber-
netrics (November 1972), 668-670.




Proof': 65T is obviously symmetric and for every nxl vector x

(2) %86 % = (x°8) (67x) = (67x)(6°x) = O
The symmetry of §8T + eI is obvious and

(3) xT(66T+eI)x = xT66TX +oex'x =0
The desired result follows from the fact that exTx = 0 if and
only if x = O.

We will denote the divergence with 66T replaced by 66T + eI by
De (1,2).

Theorem 2 - For o> 0, there is an ¢> O such that lDe(l,2)-D(l,2)l< o

Proof:; ID 1,2) -D(l 2)] = |% tr [(Al-Ag)(Agl_Ail)] +
L tr [(ATa5Y)(66T4e1)] - & tr [(A]_-Ag)(Ag -A]_ N
E(A11+A2 56T]| = 3(tr [(a7t+as)66T] + tr [(AT -A5Y)er] .
- tr [(A] +A2 )ééTJ = € | tr (AT +A21),. Given @ > 0O
choose O < ¢ <2 ¢ and the result follows.

-] 1
[tr(a;™+a57)]

vl |

The usefulness of Theorem 2 is that when considering the divergence

expression D (1,2), it may be replaced by an expression, D. (1,2), involving

€
only positive definite watrices, the numerical value of which differs from

D (1,2) by an arbitrarily small amount.
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Introduction

The technique development that follows is concerned with sglecting from
n-channel multispectral data some k combinations of the n-channels upon
which to base a given classification technique so that some measure of the
loss of the ability to distinguish between classes using the compressed
k-dimensional data is minimized.

In what follows we will assume that we are dealing with the problem of
classifying into one of m distinct n-variate classes (each distributed
according to N(uizi) i=1, ... m) an arbitrary n-channel multispectral
measurement vector x. The classification procedure will be the maximum
likelihood procedure. Information loss in compressing the n-channel data
to k channels will be taken to be difference in the average interclass
divergences (or probability of misclassification) in n-space and in k-space.
We will assume that data compression will be accomplished by kxn 1linear
transformation i.e., multiplication of the spectral n-vector by a kxn
matrix of rank k. It should be noted that perhaps the only reason (beyond
that of generalizing the idea of "feature selection") for restricting trans-
formations to be linear transformations of rank k seems to be that of
convenience. The idea of information, inergence ana invariance under trans-
formation of variables (for example as discussed by Kullback {1]) 1s limited

only to measurable transformations.



B~AVERAGE INTERCLASS DIVERGENCE

Assume the existence of m distinct classes with means and covariances

“1 n-dimensional mean vector for class 1i.

A1 n by n covariance for class 4, assumed to
bé positive definite,

T T

Let Gij - U - "3 so that §

14 ‘Sij = 631 631

The interclass divergence between classes 1 and j is
-1t Tyy 4 L opip-) Ty} -
D(1,3) = 3 tr{l\i (Aj + Gij 511 )} + 3 tr{Aj (A + 511 Gij )} - n

Note that when Ai = ., and M= u

3 3’

D(i,j) = O

so that D(i,j) 1s in a sense, a measure of the degree of difficulty of
distinguishing between classes i and j, with the larger the value of

D(i,j), the less the degree of difficulty of distinguishing between classes

d ° ’
1 end ] £ L]

There is a discussion in Reférence’ [1],{4] of a natural generalization

of the interclass divergence. i.e., the average interclass divergence, defined by



293
D= 4T =141 D(LD)
m .
- -]-'- ; -1 T mm-l
: cr{:L:I A (;15;':“\3 + 8,4 6,TD} - -—(-2——-2-11 |
h[
m
1 .. -1 m(m=-1
- g trl]Ts ) - BEL
where
m
S, = Z [A, +6,, 6 Tl
1= =1 Wy ¥ 04y 6y
JH

We are interested in performing the transformation

y = Bx

where
X ;3 an n-dimensional observation vector
B; a k by n matrix of rank k, with k <sn

y 3 the k-diﬁenéional transformed observation vector

It is known [3] that corresponding to the transformation y = Bx,

the means transforms,

and the covariances transforms,

A ~————p BA inT



Thus subsequent to performing the transformation y = Bx,

we have m classes with means and covariances

Bu1 § k-dimensional mean vector for class 1

BAiBT $ k by k covariance for class 1, (which is positive
“ definite by the assumptions on B and Ai)'

Thus in k-dimensional space, the B-induced interclass divergence Dﬁ(i,j),

is, by definition of the interclass divergence;

B(i ) =3 eel@rgh” B(Aj +6,,6 13 )BT}
+1 ext (BAjBT)'lB(Ai +6, ij)BT} -k

Similarly, in k-dimensional space, we can define the B-average interclass

divergence, DB’ as

Lz Z,

= o1 §=1+10p (1 1)

=3 tr{z [(BA B )-I(BS B )]} - Mk

where, as defined previously

m
4 ZE: .
5= oI+ 8,8,
j#i

Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.
It is shown in Reference [2] that a measure of the information lost is given

by the difference

- >
D DB 20

We are interested in minimizing the information lost, as measured by the
average interclass divergence. Thus, it is desired to maximize the B-average
interclass divergence, or equivalently, minimize - DB'

For p and k integers (p < k) it is shown in [1] for measurable

.pl _onto_ _p . onto_ _k
transformations (in general non linear) BP.E iy E and BkEb_—-...’E

that DB < DB . This fact, of course, orders (according to dimension) the
) D "

transformed divergence and, thus, one cannot "gain information" by "compressing"
or "reducing" the dimension of the data. It is, under certain conditioms,

possible that there is no loss of information in compression 1i.e., DB =D
: k

in which case we say that Bk is a sufficient (relative to divergence) statistic

[1].  The question of the existence of sufficient statistics has not been resolved
to any workable degree.

In an attempt to analyze the problem of maximizing (if possible) DB as a
k
function of B, we begin by making the following definition.

k
n onto Ek

Definition: If k is an integer and Bk:E —canly is measurable then Bk

will be called a rank-k maximal statistic provided that for every measurable

A
function B, :EPemSBtSy, £F ; DA <Dy .
k "
In other words a rank-k maximal statistic is a measurable mapping of

En onto Ek that makes the transformed divergence as large as possible for a

given compression to a k-dimensional subspace. Note that this concept (as



well as the concept of sufficient statigtic) does not depend on linear trans-—
formations. Since the current problem setting is that of multivariate normal
variables we will first examine the multivariate normal case and pursue the
problem in more generality later. The merit of pursuing the non linear problem
would be the discovery of conditions under which nonlinear rank-k maximal
statistics are sufficient statistics. Moreover, it is not known whether or not
nonlinear sufficient statistics exist whenever there do not exist linear
sufficient statistics.

We will first determine (in the multivariate normal case) whether or not
there exist linear rank-k maximal statistics for a given k < n. Note in

" can actually be

this case, that in the definition the term '"rank-k...
interpreted as "matrix of rank-k" since, for linear transformations, B is
kxn and rank (Bk) =k 1if ° and only if B, maps E® onto Ek.

In what follows we will drop the subscript k on the transformations
Bk unless the meaning of the symbol B 1is not clearly implied by context.
Definition: g will denote the set of all kxn matrices of rank k for a
given integer k. We will regard g as a metric (vtopolvogical) space whose
topology is given by the metric induced by the norm:

k,n 22'

“Bu=“(bij)" - [ 2. b.ij

i,j=1

N A
First observe that if B E:% and B 1s a rank-k maximal statistic
A . T
(i.e., B maximizes DB) then there exists some B € 23 such that BB =1
and DB = Dﬁ. This follows from the fact that there exists a non singular

A
kxk matrix P, (Pﬁ)(PB)T = I, Noting that divergence is invariant under

non-singular transformations, DPE = Dg and B = ?ﬁ will satisfy the



required conditions. Again, this says that if there is a B that maximizes
DB then there is somenormalized B"(i.e., BBT = I) which produces the

same maximum value of DB' In other words themaximum value of DB is attained

on the set:

%05{13 eH: w? -

and we may therefore limit our search for the optimum B to the set Z;.
The fact that there actually is at least one B that maximizes D, 1is
established as follows. First note that Zo is a compact subset of g

Indeed, it is easy to see that g is a bounded set (with respect to // //)

since for B € g // B/l Vtr BBT Vtr v——' Moreover, zo is a

closed set since for any sequence of elements BS in o converging to
Be g,we have, BSBST = I has limit I. On the other hand, matrix multiplication
is a continuous mapping so that = lim BsBs (1im B ) (1im B ) T and

ﬂ g g g0 g

hence B € is both topologically and algebraically equivalent to
Ek % so that viewing ﬂ as a subset of Ek and recalling that closed
and bounded subsets of Ek T are compact, we have the desired result.

Now, again, the continuity of matrix multiplication and addition implies
that D is a continuous scalar valued functions on a compact set g so
that, in addition to being bounded above, DB must attain its maximum value
at some point of ”o' This guarantees the existence of a rank-k maximal
statistic and a solution to the problem.

This solution is by no means unique. As in [5] there is at least an

entire equivalence class of matrices B that produce the same maximum divergence.

For example in the equivalence class determined by a given solution B, any



unitary transformation of B, say UB has the property that DUB.= DB and
UB(UB)T - UBBIUT = I so that there are infinitely many different "normalized"
solutions.

Basicaally these results allow the search for the optimum B to be
limited to the set go rather than the entire class of matrices . The
following results restricts the region to be searched even further and given
some geometrical insight into the character of a solution. Keep in mind that
these conditions are eventually going to be used in finding the form of a
B that satisfies the expression for the gradient of DB with respect to B
that appears in [4].

The following theorem will be useful in effecting the reduction of the
class of matrices to be searched for the optimum B.

Theorem: (Singular Value Decomposition) For each real kxn matrix B there

exist unitary matrices V(kxk) and U(n*n) such that:
B=VQU

where § is a kxn matrix = (wij) such that wij =0 if 1 #j and

13 is an eigenvalue of BBT for 1i=173.
Corollary: If BBT =1 then for k <n

W

B=V( | DU

where Ik is the kxk identity and Z denotes a k x(n-k) matrix of zeros.

Using the corollary and the rank-k maximal statidtic B, note that
V_lB = (Ik ' Z)U and that the V-lB——transformed divergence is the B-trans-
formed divergence is the (Ikl Z)U-transformed divergence. 1i.e.,

= D L
2= P01, " P | ov



This says that there exists a unitary matrix. U for which the B = (Ik Z)U -
transformed divergence is maximum, Another way of looking at it is as follows.
"Best? linear combination of features can be selected by applying, for the
proper choice of unitary matrix U, the transformation

Y= (1 {2)v X

kx1 kXn nXn nX1

which amounts to ''rotating' or "reflecting" the original coordinates of the
spectral measurement space (i.e., X--’PUX) then selecting the first k
components of the resulting vector (i.e., Y = (Ik, Z) (UX).

There are several questions related to these results and they are directly
related to the discovery of how they may simplify the calculations of the

gradient of D_, with respect to B.

B
1, Find the expression for the gradient of D(Ik‘ Z)U

with respect to U.

2. Examine decompositions of U (spectrally, Householder

transformations, etc.)

3. Relate U to the normalized eigenvectors of the population

covariance matrices.

4, The set of all unitary U form a compact group in ﬂo'

Examine the group representation applications.

5. The group in 4 is globally parameterizable. Examine

applications from theory of Lie groups.
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OGN TiI DERIVATIVE OF THE GENERALIZZD INVERSE OF A MATRIX

by
Henry P, Decell, Jr.

3

An eupression for the derivative of the C4 - inverse of a c¢ifferent=-

igbae nmatrix

[
=S

is given wherever that inverse is indeed diffe: rentiecble

1. Introduction

It is well known that if A is a complex matrix whose entries are

differenticble functions of t, then
ai ("’\—l
== - A== p 1
. at dt 1
-1
dA -1 da -1
aad - = AT =2 (2)
ac at

cave a diZierentieble gueneralized inverse. In addition, necessary and

are given that (1) and (2) remain valid when A is

atiable generalized inverse of A. Of coursé, ﬁhis

<L of susstitution does not always preserve (1) and (2) and it will be the
swrzose ol this paper to give a genmeral expression for the derivative of

e Cp - inverse of A (whenever that derivative, as well as the derivetive

oZ A, exists).

cell, Jr., Mathematics Department, University of Houston, Kouston,



Lom aud (8) dmply

.
.

XA X INA = XAGA)XA = O .

’ 1. da ® v

K LIS .
nee NA{(AX - AX )XA =0 and post multiplication of this cxpression by

AL X X =~ A XX (i.e. (7).
ate transpose of the lotter exodression is

PO P o
X'XAAX = - X XA

4}

end, of course, holds for any A that is differentaible and has o diffevenc—

icnle C, - inverse. It is clear tha A satisfies these properties since

o . o .+;'¢ EoE
Q“a) = Q) and (A) = {A) . It follows that,

e Lr, L) .

XX A AY = - XX A (i.e. (8))

Thacowen. IS A is complex and if A and A’ are differentiable then

M oo
«w

- e kg KRR
== AA + (AAAT +ATAT AT

h}
-+

A

F

«<
A3 L o
- ATAAT AT+ ATAT A At

Proof: TFormal differentiation of (4), (5),.(6) yields;

X = XAX + XAX + XAX ()

XA+ XA = AX + AX (5)’

(6)'

®

AAXJ» + A“X“

il
g.
+
2

. . " ' .
wrere X denotes the generalized inverse A of A. Moreover, appropriate

multinlications of (8)' and (5)' by X yields;

\L:’{ - XLXX + A“X“X + AICXnX

AAX

R

° KRS B
- XA + XX A +XX A

[

so that (4)' implies,

* *° % *k % . vk % x°*%
X=AXX+AXX-XAX+XXA +XXA



~onee the Corollary implies

A
.

. AP e
X = XAX - XAA'X X + A XX =~ XX 8°AX + xx°2°
. ‘ b
aind since X o= AT we have

. -k.

P3
L L0 e T
(A7) = - ataat = s A+ + AT AT
NN A+ + ATAT AT an"

4. Concluding Remarks
' -+ .
it is interesting to note that the theorem implies (A') is a soilution
of the cquation AZY = - A which, of course, is analogus to (2). In fact,
we kaow that when this equation has a solution, all solutions are given by
‘ T L SN ;
« == A AL Y - ATAYAAT for arbitrary Y having the dimen._ous of ¥ [2].
.
This observation would prompt one to construct the particulexr VY for

-l P B
waich Z= {A") (whcnever (A")  exists) if (2) were to ba preserved in

sone recojnizable way., This is in fact, what was done and ul;ho zh the
et et s - . . i g N Tk
argument or the theorem follows other lines, Y=4AA A A L.
L 4

It would also be interesting to know the significance, if any, of the

expression
. . % %, T % %
+. * o Rt - * o + 4 :
- AM + AA A +FAA A ) —AA@ A AT+ AT A YAAL

whcnever A exists and (A')  does not. To write the expression only
requires the existence of A,

Finaily, we have omitted any restatement or gunerallzatlons of the re-

ults in [1] since the application of the results herein to [1] seem rather

UJ

scraightiorward.

(&3
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Introduction

The technique development that follows is concerned with selecting from
‘n-channel multispectral data some k combinations of the n—channéls upon
which to base a given classification technique so that some measure of the
loss of theyability to distinguish between classes using the compressed
k~dimensional data is minimized.

In what follows we will assume that we are dealing with the problem of
classifying into one of m distinct n—&ariate classes (each distributed
accor&ing to N(uiEi) i=l, ... m) an arbitrary n-channel multispectfal
measurement vector X. The classification procedure will be the maximum
likelihood procedure. Information loss in compressing the n-channel data
to k channels will be taken to be difference in the average interclass
divergences (or probability of misclassification) in n-space and in k-space,
We will assume that data compression will be accomplished by kxn linear
transformation i.e., multiplication of-the spectral n~vector by a kXn
matrix of rank k. It should be noted that perhaps the only reason (beyond
that of generalizing the ideq of "feature selection") for restricting trans-
formations to be .linear transformations of rank k seems to be that of
convenience., The idea of information, divergence and invariance under trans-
formation of variables (for.é%ample as discussed by Kullback [1]) is limited

only to measurable transformations.



B-AVERAGE INTERCLASS DIVERGENCE

Assume the existence of m distinct classes with means and covariances

ui n-dimensional mean vector for class 1.

Ai "n by n covariance for class 1, assumed to

pé positive definite.

T T
§.. = - 8 =8, 8
Let 1] ui uj so that £ Gij 1 %51

The interclass divergence between classes i and j 1is
A STt | T 1, .r-1 Tyy _
D(i,3) = 5 tr{Ai (Aj + (Sij 613‘ 1+ 5 tr{Aj (hy + dij Gij )} - n
Note that when Ai = Aj and B = uj,

D(i,j) = O

so that D(i,j) 1is in a sense, a measure of the degree of difficulty of
distinguishing between classes i and j, with the larger the value of
D(1,j), the less the degree of difficulty of distinguishing between classes
i and j.
Li .-
There is a discussion in Reference [1],[4] of a natural generalization

of the interclass divergence i.e., the average interclass divergence, defined by



.E:.m
D= {1 jei+1 P(LD

m %
PSRN LY [hy + 8y 6 Ty - '—“i‘i"-'—l-)—n

2 AT Y YA 13
j#i
z
=1 -1 m(m-1)
2 trlifmhysy) -5 n

where

We are interested in performing the transformation

y = Bx

where
x 3 an n-dlmensional observation vector

B; a k by n matrix of rank k, with k <n

i
1

s the k-dimensional transformed observation vector

]

It is known [3] ' that corresponding to the transformation y = Bx,
) 1

the means transforms,

and the covariances transforms,

A, ———> BA iBT



Thus subsequent to performing the transformation y = Bx,

we have m classes with means and covariances

Bui ; k-dimensional mean vector for class i

BAiBT ; k by k covariance for class i, (which is positive
definite by the assuriptions on B and Ai).

Thus in k-dimensional space, the B-induced interclass divergence DB(i,j),

is, by definition of the interclass divergence;

. 1. T,-1 T T
Dy(1,3) = E-tr{(BAiB ) B(Aj + éij 6ij)B }

1 T.-1 T T
+ 3 tr{(BAjB ) B(Ai + 51j Gij)B } -k

Similarly, in k-dimensional space, we can define the B-average interclass

divergence, D

g» as

m-1 m

D = j=1 j=i+10p(1s3)

m

%-tr{i=1 [(BA, 31" (8s,BH)1} - E&%:ll K

where, as defined previously

m

S =Z[A,+6 6T ]

17 §=1'" 1§ i3
j#i

Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.
It is shown in Reference [2] that a measure of the information lost is given
by the difference
D - DB 20

We are interested in minimizing the information lost, as measured by the
average interclass divergence. Thus, it is desired to maximize the B-average
interclass divergence, or equivalently, minimize - DB.

It is known that if P is any k*k nonsingular transformation then the
transformed B~average interclass divergence is an invariant under the trans-

formation P (i.e., D, = DPB) DB is not invariant under singular transformations.

B
One can define an equivalence relation on the set of all kxn (rank k)
matrices W8 as follows. Call Blé B2 (for Bl e¥® and B2 e®) if and only
if there is some nonsingular kxk matrix P such that B1 = PB2. It 1s an
easy task to verify that this relation is reflexive, symmetric and transitive
so that the set B 1is partitioned into disjoint equivalence classes whose
union is B, We will denote the'set of equivalences by 15700 . Note (by
definition of an equivalence class in @/m ) that the value of the divergence
at each representative element of a given equivalence class is constanf. This
indicates that if there is a "best" kxn transformation B (in the sense of
maximizing DB) then each element of the equivalence class determined by that
B is also an element of WY that is "best". Note further that each equivalence
class contains infinitely many elements so that if there is a "best" B then
there are infinitely many so (there may even be more outside of the equivalence

class in question (i.e., distinct equivalence classes may have same divergence)

This problem is of great importance in actual computation of a "best"



B 88. The expression for the quantity DB is non linear in B and

iterative schemes that might be used to calculate the "best" B may well

tend to exhibit convergence problems due to the large number of B € @

maximizing (or producing a relative extremum) of DB'

Several problems are currently under study:

1.

2.

5.

Determine a workable form for the variation of DB

with respect to B.

Characterize (by some workable computational means) a
single representative element in each equivalence class

some one or more of which account for all relative extremums
of D .

Determlne the number (or cardinality) of @/U" .

Determine some ordering 2‘ on 8/(/' (or subset thereof)

ﬂl v
on which BlB e B/ aﬂd Bl— >Dl Bz for

every Bl E_Bl and B2 € ‘1?2.

Determine whether or not DB actually attains its maximum
value at some (and hence at infinitely many) B € ﬁ
Characterize proper subsets of & on which DB attains

its maximum (or relative extremum) value.
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Introduction

The technique development that follows is concerned with sglecting from
n-channel multispectral data some k combinations of the n=-channels upon
which to base a given classification technique so that some measure of the
loss of the ability to distinguish between classes using the compressed
k~dimensional data is minimized.

In what follows we will assume that we are dealing with the problem of
classifying into one of m distinct n-variate classes (each distributed
according to N(uiZi) i=1, ... m) an arbitrary n-channel multispectral
measurement vector x. The classification procedure will be the maximum
likelihood procedure. Information loss in compressing the n-channel data
to k channels will be taken to be difference in the average interclass
divergences (or probability of misclassification) in n-space and in k-space.
We will assume that data compression will be accomplished by kxn Ilinear
transformation i.e., multiplication of the spectral n-vector by a kxn
matrix of‘rank k. It should be noted that perhaps the only reason (beyond
that of generalizing‘the idea of “feature selection') for restricting trans-
formations to be linear transformations of rank k seems to be that of
convenience. Tﬁe idea of information, 41vergence and invariance under trans-
formation of variables (for example as discussed by Kullback [1]) is limited

only to measurable transformations.

[
e



B-AVERAGE INTERCLASS DIVERGENCE

Assume the existence of m distinct classes with means and covariances

“1 n-dimensional mean vector for class {1.

Ai n by n covarifance for class 1, assumed to
bé positive definite.

T T

Let Gij =y - uj so that 6

13 ‘Sij = 511 651

The interclass divergence between classes i and j {is

D(1,§) = 3 ti‘{!\;l(l\j +8,, aijT)} + %— t'r{t\;lm1 + 8y sijT)} -n

Néte that when A1 - Aj and My = uj,

D(i,3) = O

so that D(i,j) 4is in a sense;, a measure of the degree of difficulty of
distinguishing between classes i and j, with the larger the value of

D(i;j), the less the degree of difficulty of distinguishing between classes

i d °
and i) Le]

There is a discussion in Reference [1],[4] of a natural generalization

of the interclass divergence i.e., the average interclass divergence, defined by
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We are interasted in performing the transformation

v

y = Bx
where
x 3  an n-dimensional observation vector
B; a k by n matrix of rank k, with k < n
) y 3 the k—dﬁﬁenéional transformed observation vector
Be

It is known ([3] that corresponding to the transformation y = Bx,

the means transforms,

ui q____.gp Bui

&

and the covariances transforms, , ‘ Y S
‘ o N .

A ———p BA B
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Thus subsequent to performing the transformation y = Bx,

we have . ‘m classes with means and covariances

Bui ; k-dimensional mean vector for class 1

BAiBT s k by k covariance for class 1, (which is positive
- definite by the assuipptions on B and Ai).

Thus in k-dimensional space, the B-induced interclass divergence Dﬁ(i,j),

is, by definition of the interclass divergence;

_ BT
B(i.j) er{(BA B Ty= B(AJ + 6 1 ij }

: T,~-1 T \oT
+5 tr{(BAjB ) B(A, 4 61 )B )} - k
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~ Similarly, in k-dimensional space, we can define the B-average interclass

divergence, DB’ as

m-1 m

.z Z,

i=1 §=1+10p(L>d)

5 tr{z [(BA B )-I(BS B )]} - —g—lk

where, as defined previously

m
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Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.
It is shown in Reference [2] that a measure of the information lost is given

by the difference

- >
D DB =20

We are interested in minimizing the information lost, as measured by the
average interclass divergence. Thus, it is desired to maximize the B-average
interclass divergence, or equivalently, minimize —DB.

When the criterion for "feature selection'" is based upon the probability
of misclassification for n-variate normal classes N(uiZi) i=1,00..,m;
one encounters the problem (as in the expression for B-average interclass
divergence) of handling an expression of the form (BZ:.LBT)_1 i,e., the
jinverse of the covariance of the transformed n-variate spectral variables.
This expression appears in each class density in the quadratic form (BX—Bui)T
(BZiBT)—l(BX—Bui) where B 1is the rank k, kxXn matrix to be selected that

minimize the probability of misclassification. Note that if k = n then

-1T_. -1 -
1 . 1 1
i

(BZiBT)—l =B I and the quadratic form above then remains invariant

under the transformation B.
Since B is rectangular (kxn) and of rank k, we can at most generally
guarantee that (BZiBT) is indeed an invertible kXk matrix. We cannot,

T

however, hope that the relation between the inverse of BZiB and the inverse

of Zi is as simple as that in the case k = n. 1Indeed, it makes no sense
to talk about the "inverse of B" to start with. It is possible to develop

T

an expression for the inverse of BZiB in term of the generalized inverse

of B and the inverse of Zi'



To this end we will recall the definition of the generalized inverse of
an arbitrary real matrix A, and a theorem applicable to the derivation of

the expression for the inverse of BZiBT.

Theorem: (Penrose) [5] For each real matrix A there exists one and only

one matrix X that simultaneously satisfies the four equations

1. AXA=A
2. XAX=X
3. @m)?T=xaA
4. (AT = ax

The unique X in this theorem is called the generalized inverse of A and

is denoted X = A+.

Theorem (Penrose) [5] Any matrix equation A X B = C has a solution X

if and only if
antc 3B = C
The general solution (if there are any solutions (s)) 1is given by
x = ATcB" + v - ataves®

where Y is any matrix having the dimension of X.
We apply the latter theorem in the following way.
It is certainly true that BZiBT has an inverse since B has rank

k <n and Zi has rank n. Hence we must have

T T,-1 _
(BEiB )(BZiB ) = I,



This establishes the fact that the matrix equation

BX = 1
has a solution

and that (by the second theorem) there must be some Y such that
ziBT(BZiBT)'l =8+ (1 - 8™)Y

or
BT(Bz:iBT)'l = Z;*B+ + Z;l(l - B'R)Y

B+T T

Now since B is of rank k, it follows that B" = BB+ = 1 so that

multiplying the latter equation by B+T we find that

(BziBT)'l = B+TZ;1B+ + B+TZ;1(I - BTB)Y

The problem now is to find out just what Y looks like and to examine

conditions under which Y = Z (the zero matrix) will work.

This problem will be attacked in a later work.
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INTRODUCTION

This paper considefs the problem of feature selection or reducing the
dimension of the data to be processed from n to k. By reducing the dimen-
sjon of the data from n to k, classification time is generally reduced.

Yet the dimension reduction should not be so great that classification
accuracy is impaired. Thus, consider the general problem of classifying
an n-dimensional observation vector x into one of m-distinct classes
Tis i=1,2,...,m where each class i is norma}]y distributed with mean 1P
and covariance Ly SO that we write my = “i(“i’Ai)‘ As shown in Reference 1,
the probability of misclassification is minimized if a maximum 1ikelihood
classification procedure is used to classify the data. Thus, the notation
PMC is used to denote this minimal probability of misclassification. The
dimension of each observation vector to be processed can be conveniently
reduced by performing the transformation y = Bx, where B is a k by n
matrix of rank k. Thus, the n-dimensional classification problem transforms
into a k-dimensional classification problem. The problem becomes one of
classifying each k-dimensional observat}on vector y into one of m-distinct

).

classes m;, where now m, = Wi(Bui, BA.B

determined by the row vectors of B, the minimal probability of misclassifica-

In this k-dimensional space

tion resulting from applying a maximum likelihood classification procedure is
denoted by PMCB.
~ation of the components of the observation vector x, it can be shown that, in

Since the transformation y = Bx produces a linear combin-

general, information is lost and

PMCB > PMC

Thus, for a fixed k, the feature selection problem could be stated as:
select a kK x n matrix B from the class of all k by n matrices of rank k
such that

PMCg = min PNCB

where PMC; represents the probability of misclassification resulting from
applying a maximum 1ikelihood classificaticn procedure on the transformed
data Bx.

-1-B



The problem of evaluating and minimizing PMCp is handled indirectly.
Let D(1,J) denote the interclass divergence between classes i and j
(Reference 2), as determined using n-dimensional information. Similarly,
let DB(i,J) represent the interclass divergence between classes i and j
resulting from performing the transformation y = Bx. It is noted that
the interclass divergence is a measure of the "degree of difficulty" of
discriminating between classes .f and Ty with in general, the larger
the interclass divergence, the greater the "separation" between classes
m; and TS Since (Reference 2) it is true that

D(1,3) 2 Dy(i.J)

it follows that the difference

can be considered as a measure of the separation to be gained for classes

T and Ty If the average divergence for m classes is defined by

m-1 m
D=3 0(iL)

i=1j=1+1

it follows that the "B-average divergence", Dgs satisfies

DR ILED 3 et

=1 j=i+1 i=1 j=i+]

i.e., that DB < D for every k x n matrix By k = 1,,..,n.
Ve will prove the following theorem,

* Theorem: If D = D.. then PMC, = PHC.

BS
These results suggest for fixed k less than n, that one should select B
so as to maximize DB‘



An initial approach to the problem of selecting the "best" k could be
obtain the "best" B for various values of k less than n.”“Thenwselect an
fadequate" value of k by computing the difference D - DB’ and comparing
D(i,j) with DB(i,j) for all distinct class pairs, where now, B is assumed
to maximize Dy for a fixed k. The comparison of D(i,j) with DB(i,j) for
~all distinct class pairs will constitute what we will call a "Class Separa-
bility to be Gained Map". For a given set of classes m and ﬁj, the value
of DB(i,j) can be considered to represent the separability between classes
T and TS resulting from the transformation y = Bx. The difference D(i,J)
- DB(i,j) > 0 represents the separation to be gained for this class pair.
Thus, we desire to find an integer k (preferably as small as possible) and
éorresponding optimal B such that the difference D(i,j) - DB(i,j) is ﬁsma]]f
for all distinct class pairs.

Tou and Heydorn (Reference 3) proposed a procedure to maximize DB(i,j),

as a function of B. However, this procedure is valid only in case m = 2,
i.e., the two class problem. Babu (Reference 4) extended the above procedure
to the multi-class problem by proposing a procedure for maximizing DB' Both
proceduras amount to computing the gradient of the appropriate function DB
or DB(i,j) with respect to B. Babu's expression for the gradient of the
average divergence Dg with respect to B is (in addition to being incorrect)

rather lengthy and numerically unattractive since it is expressed in terms
~of many eigenvalues and eigenvectors.

In this paper, we derive a simple expression for the gradient of Dg

with respect to B. This expression for the gradient is free of any require-
ment for computation of eigenvectors cr eigenvalues, and, in addition, all
matrix inversions necessary to evaluate the gradient are available from com-
puting DB‘ Thus, the feature selection problem becomes one of maximizing
Dp over the class of all k by n matrices of rank k. We will furthir show that

= I] and,
further, that the maximum value of DB is attained on [Beg: B = (Ik\Z)U vhere U

the maximum value of DB is attained on the compact set, 8 = [B:BB

is an isometry.] Geometrical interpretations of the results will be discussed
as in References 6 & 7.



It will be shown that it is conyenient to write DB as

m

D = 1/2 tr{Z; (BA].BT)"](BsiBT) - k(m)ém-U
1= .

where Si denotes the positive definite symmetric matrix:

_ T
S -i: ‘(AJ. + 845045 )

j=1
J#i

We will show with that, the gradient of DB with respect to B is

T m

3D
(EEE) - > |58 - a;8Tea;8N) M es 8Ty | (s
=1

The theoretical development of these techniques was an outgrowti of
University of Houston Mathematics Department Seminars in Pattern Recognition
and Classification Theory. The expression for the gradient DB and the re-
lated results appear in References (5-8).

A computer program based on these results was subsequently developed
to maximize Dg for a given k (Reference 9). The program utilizes (in the
iterative solution of the variational ecuation for B) tihe Davidon Iterator
(based on the Davidon-Fletcher-Powell technicue) generously provided by
Ivan Johnson, Johnson Space Center (Reference 10).

RESULTS

This section summarizes tne results for a 12-dimensional data set
obtained from the .C1 flight line. In particular, nine distinct classes



are considered corresponding to soybeans, corn, oats, red-clover, alfalfa,
rye, bare soil, and two distinct classes of wheat. The 12 by 12 covar-
fances and 12 by 1 means for each crop are as defined in Reference 11 and
obtained by actually sampling the C1 flight line data. (Additional
results for different data sets are presented in the paper). Three
particular cases corresponding to k = 2, 3 and 6 are considered. Let

Bk denote that matrix B of rank k which maximizes DB for a given k less
than n. Then the results for this data set are summarized in Table 1
below:

Table 1.
k 2 3 6
Dey” 33.4 45.6 63.0
. * :
DB‘k. 57.1 67.1 72.6
RATIO .78 .92 .99

In Table 1., DBk represents the maximum value of DB-for a

given k and is obtained numerically, as discussed previously. The term

RATIO denotes the ratio DB /D, where as discussed previousiy, D > DB'
k
Note that when k = 6, this RATIO is .99, the implication being that almost

no information is lost by performing the transformation y = Bx, where
B is a 6 by 12 matrix which maximizes_DB. Since no information is lost,
it will be shown that for this B, PMCB=v PI\C, so that B also essentially
minimizes the probability of misclassification.

The other values appearing in Table 1 corresponding to DEX are

obtained as follows. Let k be fixed with n equal to 12, so that each
observation vector x constitutes a tuple

_ T
X = (x], X2"f’X]2)

*
The numbers appearing in Table 1 or discussed in this report are scaled

corresponding to DE(/18O or DB /180.
! k



Now by selecting the first k components of every observation vector x
a k-dimensional subspace is generated. Mathematically, selecting the
first k components, for the particular case of k=3, is equivalent to
performing the operation

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

<
I

= Bx

Thus associated with the selection of the first k components of x is a cor-
responding B matrix, so that the B-average divergence DB can be computed.
This process can be repeated for each distinct set of k components, with
the total number of distinct sets being the number of combinations of n
_objects taken k at a time. Thus to each distinct set of k components cor-
responds a distinct matrix B.

In particular, when k = 6, 924 distinct evaluations of the B-average
divergence must be performed. For a fixed k, the evaluation of all the
distinct B-average divergences, corresponding to the number of distinct
comdbinations of n elements taken k at a time, constitutes what is called
an exhaustive search procedure.

Referring back to Table 1, the value of DEX Wwith k = 3 is obtained
by selecting the ninth, eleventh, and twelfth components of each obser-
vation vector and evaluating the resulting B-average interclass diver-
gence. Evaluating the B-average interclass divergence for all other
distinct three component combinaticns is found to result in a smaller
value of the B-average divergence (Again, it should be recalled that
associated with each distinct 3 component combination is a distinct
3 by 12 B matrix). By repeating the exhaustive search procedure fcr
k=2 and k = 6, it is possible to generate the values of DEX presented
in Table 1. Note that for the corresponding values of k, DBk is signi-

ficantly larger than DEX’ Also the value 67.1 attained by DB (when
k

k = 3) is not attained with the exnaustive search procedure until k = 7,



so that it would take the seven "best" components of each observation
vector to retain information equivalent to that retained by B3 (as meas-
ured by the average divergence). Recall the time to classify data is
proportional to n(n+1), so that the time to process the data in the three-
dimensional feature space would be approximately 3/14 the computational
time required to process the 7-dimensional data using the best 7 components
of each observation vector - yet the performance would be approximately

the same in that similar classification maps would be generated.

It is noted that for a given k, the optimal By which maximizes DB
is obtained in less time than is necessary to execute an exhaustive search
procedure. Also, less than three minutes of Univac 1108 computer time
is necessary to obtain BZ’ 83 and 86’ with an average for any given k, of
about 120 evaluation of DB and 25 evaluations of aDB/aB being necessary.

The problem of selecting the best k- namely the smallest integer k
such that adequate class separation is maintained is handled by construct-
ing a so-called "Class Separability to be Gained Map," and is shown in
Figure 1. In gehera], this map compares the k-dimensional interclass diver-
gence DB(i,j) with the 12-dimensional interclass divergence D(i,j) for each
distinct i-j pair, where as shown in Reference 2.

D(7,3) 2 Dgli,J)

In particular, Figure 1 compares the three-dimensional feature space
interclass divergence DB3(i,j) with D(i,j), with the vertical distance

from each point to the solid diagonal line representing the interclass
separability to be gained for each distinct class pair. Thus for a given
i-j pair, its abscissa on the class separability to be gained map is fixed,
and as k is allowed to increase, its ordinate will increase until finally
it attains the diagonal line when k = 12. In an interactive system, by
displaying the class separability to be gained map on a console for a

fixed k, the user could decide if he is satisfied with both the separabil-
ity and the separability tc be gained for all distinct class pairs. A



critical situation can be assumed to occur when for a given class pair,
the separability is "small" and the separability to be gained is "]arge"
or equivalently, when D k(1,3) is small and the difference

is large. Such a critical situation could possibly be indicated by the
circled point appearing on Figure 1, which corresponds to the classes,
oats and wheat. Such a situation could be handled by increasing k (in
this case from 3 to 4). By resolving the optimization problem for 84,
a new class separability to be gained map could be generated and displayed.

Finally, the symbols A appearing in Figure 1 represent the separa-
tion between particular class pairs resulting from the "best" three channel
combination as obtained from the exhaustive search pfocedure (i.e.,
channels 9, 11,.and 12). The increase in class separation for these
class pairs resulting from B3 is clearly significant.
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